The smashed filter for compressive classification and target recognition

نویسندگان

  • Mark A. Davenport
  • Marco F. Duarte
  • Michael B. Wakin
  • Jason N. Laska
  • Dharmpal Takhar
  • Kevin F. Kelly
  • Richard G. Baraniuk
چکیده

The theory of compressive sensing (CS) enables the reconstruction of a sparse or compressible image or signal from a small set of linear, non-adaptive (even random) projections. However, in many applications, including object and target recognition, we are ultimately interested in making a decision about an image rather than computing a reconstruction. We propose here a framework for compressive classification that operates directly on the compressive measurements without first reconstructing the image. We dub the resulting dimensionally reduced matched filter the smashed filter. The first part of the theory maps traditional maximum likelihood hypothesis testing into the compressive domain; we find that the number of measurements required for a given classification performance level does not depend on the sparsity or compressibility of the images but only on the noise level. The second part of the theory applies the generalized maximum likelihood method to deal with unknown transformations such as the translation, scale, or viewing angle of a target object. We exploit the fact the set of transformed images forms a low-dimensional, nonlinear manifold in the high-dimensional image space. We find that the number of measurements required for a given classification performance level grows linearly in the dimensionality of the manifold but only logarithmically in the number of pixels/samples and image classes. Using both simulations and measurements from a new single-pixel compressive camera, we demonstrate the effectiveness of the smashed filter for target classification using very few measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Echelle Spectroscopy

Building on the mathematical breakthroughs of compressive sensing (CS), we developed a 2D spectrometer system that incorporates a spatial light modulator and a single detector. For some wavelengths outside the visible spectrum, when it is too expensive to produce the large detector arrays, this scheme gives us a better solution by using only one pixel. Combining this system with the “smashed fi...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

General Linear Chirplet Transform and Radar Target Classification

In this paper, we design an attractivealgorithm aiming to classify moving targets includinghuman, animal, vehicle and drone, at groundsurveillance radar systems. The non-stationary reflectedsignal of the targets is represented with a novelmathematical framework based on behavior of thesignal components in reality. We further propose usingthe generalized linear chirp transform for the analysisst...

متن کامل

Compressive phase-only filtering at extreme compression rates

We introduce an efficient method for the reconstruction of the correlation between a compressively measured image and a phase-only filter. The proposed method is based on two properties of phase-only filtering: such filtering is a unitary circulant transform, and the correlation plane it produces is usually sparse. Thanks to these properties, phase-only filters are perfectly compatible with the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007